本项目基于Meta发布的可商用大模型Llama-2开发,是中文LLaMA&Alpaca大模型的第二期项目,开源了中文LLaMA-2基座模型和Alpaca-2指令精调大模型。这些模型在原版Llama-2的基础上扩充并优化了中文词表,使用了大规模中文数据进行增量预训练,进一步提升了中文基础语义和指令理解能力,相比一代相关模型获得了显著性能提升。相关模型支持FlashAttention-2训练。标准版模型支持4K上下文长度,长上下文版模型支持16K上下文长度,并可通过NTK方法最高扩展至24K+上下文长度。
Llama2模型简介
本项目推出了基于Llama-2的中文LLaMA-2以及Alpaca-2系列模型,相比一期项目其主要特点如下:
📖 经过优化的中文词表
- 在一期项目中,我们针对一代LLaMA模型的32K词表扩展了中文字词(LLaMA:49953,Alpaca:49954)
- 在本项目中,我们重新设计了新词表(大小:55296),进一步提升了中文字词的覆盖程度,同时统一了LLaMA/Alpaca的词表,避免了因混用词表带来的问题,以期进一步提升模型对中文文本的编解码效率
⚡ 基于FlashAttention-2的高效注意力
- FlashAttention-2是高效注意力机制的一种实现,相比其一代技术具有更快的速度和更优化的显存占用
- 当上下文长度更长时,为了避免显存爆炸式的增长,使用此类高效注意力技术尤为重要
- 本项目的所有模型均使用了FlashAttention-2技术进行训练
🚄 基于PI和NTK的超长上下文扩展技术
- 在一期项目中,我们实现了基于NTK的上下文扩展技术,可在不继续训练模型的情况下支持更长的上下文
- 基于位置插值PI和NTK等方法推出了长上下文版模型,支持16K上下文,并可通过NTK方法最高扩展至24K-32K
- 进一步设计了方便的自适应经验公式,无需针对不同的上下文长度设置NTK超参,降低了使用难度
🤖 简化的中英双语系统提示语
- 在一期项目中,中文Alpaca系列模型使用了Stanford Alpaca的指令模板和系统提示语
- 初步实验发现,Llama-2-Chat系列模型的默认系统提示语未能带来统计显著的性能提升,且其内容过于冗长
- 本项目中的Alpaca-2系列模型简化了系统提示语,同时遵循Llama-2-Chat指令模板,以便更好地适配相关生态
下图展示了本项目以及一期项目推出的所有大模型之间的关系。
已开源的模型
- 基座模型:Chinese-LLaMA-2-7B, Chinese-LLaMA-2-13B
- 聊天模型:Chinese-Alpaca-2-7B, Chinese-Alpaca-2-13B
- 长上下文模型:Chinese-LLaMA-2-7B-16K, Chinese-LLaMA-2-13B-16K, Chinese-Alpaca-2-7B-16K, Chinese-Alpaca-2-13B-16K
模型下载
模型选择指引
以下是中文LLaMA-2和Alpaca-2模型的对比以及建议使用场景。如需聊天交互,请选择Alpaca而不是LLaMA。
对比项 | 中文LLaMA-2 | 中文Alpaca-2 |
---|---|---|
模型类型 | 基座模型 | 指令/Chat模型(类ChatGPT) |
已开源大小 | 7B、13B | 7B、13B |
训练类型 | Causal-LM (CLM) | 指令精调 |
训练方式 | LoRA + 全量emb/lm-head | LoRA + 全量emb/lm-head |
基于什么模型训练 | 原版Llama-2(非chat版) | 中文LLaMA-2 |
训练语料 | 无标注通用语料(120G纯文本) | 有标注指令数据(500万条) |
词表大小[1] | 55,296 | 55,296 |
上下文长度[2] | 标准版:4K(12K-18K) 长上下文版:16K(24K-32K) | 标准版:4K(12K-18K) 长上下文版:16K(24K-32K) |
输入模板 | 不需要 | 需要套用特定模板[3],类似Llama-2-Chat |
适用场景 | 文本续写:给定上文,让模型生成下文 | 指令理解:问答、写作、聊天、交互等 |
不适用场景 | 指令理解 、多轮聊天等 | 文本无限制自由生成 |
Note
[1] 本项目一代模型和二代模型的词表不同,请勿混用。二代LLaMA和Alpaca的词表相同。
[2] 括号内表示基于NTK上下文扩展支持的最大长度。
[3] Alpaca-2采用了Llama-2-chat系列模板(格式相同,提示语不同),而不是一代Alpaca的模板,请勿混用。
完整模型下载
以下是完整版模型,直接下载即可使用,无需其他合并步骤。推荐网络带宽充足的用户。
模型名称 | 类型 | 大小 | 下载地址 |
---|---|---|---|
Chinese-LLaMA-2-13B | 基座模型 | 24.7 GB | [百度] [Google] [🤗HF] |
Chinese-LLaMA-2-7B | 基座模型 | 12.9 GB | [百度] [Google] [🤗HF] |
Chinese-Alpaca-2-13B | 指令模型 | 24.7 GB | [百度] [Google] [🤗HF] |
Chinese-Alpaca-2-7B | 指令模型 | 12.9 GB | [百度] [Google] [🤗HF] |
以下是长上下文版模型,推荐以长文本为主的下游任务使用,否则建议使用上述标准版。
模型名称 | 类型 | 大小 | 下载地址 |
---|---|---|---|
Chinese-LLaMA-2-13B-16K | 基座模型 | 24.7 GB | [百度] [Google] [🤗HF] |
Chinese-LLaMA-2-7B-16K | 基座模型 | 12.9 GB | [百度] [Google] [🤗HF] |
Chinese-Alpaca-2-13B-16K 🆕 | 指令模型 | 24.7 GB | [百度] [Google] [🤗HF] |
Chinese-Alpaca-2-7B-16K 🆕 | 指令模型 | 12.9 GB | [百度] [Google] [🤗HF] |
Important
使用长上下文模型推理时,必须按照文档要求进行设置,具体请参考各推理部署工具的Wiki。
LoRA模型下载
以下是LoRA模型(含emb/lm-head),与上述完整模型一一对应。需要注意的是LoRA模型无法直接使用,必须按照教程与重构模型进行合并。推荐网络带宽不足,手头有原版Llama-2且需要轻量下载的用户。
模型名称 | 类型 | 合并所需基模型 | 大小 | LoRA下载地址 |
---|---|---|---|---|
Chinese-LLaMA-2-LoRA-13B | 基座模型 | Llama-2-13B-hf | 1.5 GB | [百度] [Google] [🤗HF] |
Chinese-LLaMA-2-LoRA-7B | 基座模型 | Llama-2-7B-hf | 1.1 GB | [百度] [Google] [🤗HF] |
Chinese-Alpaca-2-LoRA-13B | 指令模型 | Llama-2-13B-hf | 1.5 GB | [百度] [Google] [🤗HF] |
Chinese-Alpaca-2-LoRA-7B | 指令模型 | Llama-2-7B-hf | 1.1 GB | [百度] [Google] [🤗HF] |
以下是长上下文版模型,推荐以长文本为主的下游任务使用,否则建议使用上述标准版。
模型名称 | 类型 | 合并所需基模型 | 大小 | LoRA下载地址 |
---|---|---|---|---|
Chinese-LLaMA-2-LoRA-13B-16K | 基座模型 | Llama-2-13B-hf | 1.5 GB | [百度] [Google] [🤗HF] |
Chinese-LLaMA-2-LoRA-7B-16K | 基座模型 | Llama-2-7B-hf | 1.1 GB | [百度] [Google] [🤗HF] |
Chinese-Alpaca-2-LoRA-13B-16K 🆕 | 指令模型 | Llama-2-13B-hf | 1.5 GB | [百度] [Google] [🤗HF] |
Chinese-Alpaca-2-LoRA-7B-16K 🆕 | 指令模型 | Llama-2-7B-hf | 1.1 GB | [百度] [Google] [🤗HF] |
Important
LoRA模型无法单独使用,必须与原版Llama-2进行合并才能转为完整模型。请通过以下方法对模型进行合并。
推理与部署
本项目中的相关模型主要支持以下量化、推理和部署方式,具体内容请参考对应教程。
工具 | 特点 | CPU | GPU | 量化 | GUI | API | vLLM§ | 16K‡ | 教程 |
---|---|---|---|---|---|---|---|---|---|
llama.cpp | 丰富的量化选项和高效本地推理 | ✅ | ✅ | ✅ | ❌ | ✅ | ❌ | ✅ | link |
🤗Transformers | 原生transformers推理接口 | ✅ | ✅ | ✅ | ✅ | ❌ | ✅ | ✅ | link |
Colab Demo | 在Colab中启动交互界面 | ✅ | ✅ | ✅ | ✅ | ❌ | ✅ | ✅ | link |
仿OpenAI API调用 | 仿OpenAI API接口的服务器Demo | ✅ | ✅ | ✅ | ❌ | ✅ | ✅ | ✅ | link |
text-generation-webui | 前端Web UI界面的部署方式 | ✅ | ✅ | ✅ | ✅ | ✅† | ❌ | ✅ | link |
LangChain | 适合二次开发的大模型应用开源框架 | ✅† | ✅ | ✅† | ❌ | ❌ | ❌ | ✅ | link |
privateGPT | 基于LangChain的多文档本地问答框架 | ✅ | ✅ | ✅ | ❌ | ❌ | ❌ | ✅ | link |
Note
† 工具支持该特性,但教程中未实现,详细说明请参考对应官方文档
‡ 指是否支持16K长上下文模型(需要第三方库支持自定义RoPE)
§ vLLM后端不支持16K长上下文模型
系统效果
为了评测相关模型的效果,本项目分别进行了生成效果评测和客观效果评测(NLU类),从不同角度对大模型进行评估。需要注意的是,综合评估大模型能力仍然是亟待解决的重要课题,单个数据集的结果并不能综合评估模型性能。推荐用户在自己关注的任务上进行测试,选择适配相关任务的模型。
生成效果评测
为了更加直观地了解模型的生成效果,本项目仿照Fastchat Chatbot Arena推出了模型在线对战平台,可浏览和评测模型回复质量。对战平台提供了胜率、Elo评分等评测指标,并且可以查看两两模型的对战胜率等结果。题库来自于一期项目人工制作的200题,以及在此基础上额外增加的题目。生成回复具有随机性,受解码超参、随机种子等因素影响,因此相关评测并非绝对严谨,结果仅供晾晒参考,欢迎自行体验。部分生成样例请查看examples目录。
⚔️ 模型竞技场:http://llm-arena.ymcui.com
系统 | 对战胜率(无平局) ↓ | Elo评分 |
---|---|---|
Chinese-Alpaca-2-13B-16K | 86.84% | 1580 |
Chinese-Alpaca-2-13B | 72.01% | 1579 |
Chinese-Alpaca-Pro-33B | 64.87% | 1548 |
Chinese-Alpaca-2-7B | 64.11% | 1572 |
Chinese-Alpaca-Pro-7B | 62.05% | 1500 |
Chinese-Alpaca-2-7B-16K | 61.67% | 1540 |
Chinese-Alpaca-Pro-13B | 61.26% | 1567 |
Chinese-Alpaca-Plus-33B | 31.29% | 1401 |
Chinese-Alpaca-Plus-13B | 23.43% | 1329 |
Chinese-Alpaca-Plus-7B | 20.92% | 1379 |
Note
以上结果截至2023年9月1日。最新结果请进入⚔️竞技场进行查看。
客观效果评测:C-Eval
C-Eval是一个全面的中文基础模型评估套件,其中验证集和测试集分别包含1.3K和12.3K个选择题,涵盖52个学科。实验结果以“zero-shot / 5-shot”进行呈现。C-Eval推理代码请参考本项目:📖GitHub Wiki
LLaMA Models | Valid | Test | Alpaca Models | Valid | Test |
---|---|---|---|---|---|
Chinese-LLaMA-2-13B | 40.6 / 42.7 | 38.0 / 41.6 | Chinese-Alpaca-2-13B | 44.3 / 45.9 | 42.6 / 44.0 |
Chinese-LLaMA-2-7B | 28.2 / 36.0 | 30.3 / 34.2 | Chinese-Alpaca-2-7B | 41.3 / 42.9 | 40.3 / 39.5 |
Chinese-LLaMA-Plus-33B | 37.4 / 40.0 | 35.7 / 38.3 | Chinese-Alpaca-Plus-33B | 46.5 / 46.3 | 44.9 / 43.5 |
Chinese-LLaMA-Plus-13B | 27.3 / 34.0 | 27.8 / 33.3 | Chinese-Alpaca-Plus-13B | 43.3 / 42.4 | 41.5 / 39.9 |
Chinese-LLaMA-Plus-7B | 27.3 / 28.3 | 26.9 / 28.4 | Chinese-Alpaca-Plus-7B | 36.7 / 32.9 | 36.4 / 32.3 |
客观效果评测:CMMLU
CMMLU是另一个综合性中文评测数据集,专门用于评估语言模型在中文语境下的知识和推理能力,涵盖了从基础学科到高级专业水平的67个主题,共计11.5K个选择题。CMMLU推理代码请参考本项目:📖GitHub Wiki
LLaMA Models | Test (0/few-shot) | Alpaca Models | Test (0/few-shot) |
---|---|---|---|
Chinese-LLaMA-2-13B | 38.9 / 42.5 | Chinese-Alpaca-2-13B | 43.2 / 45.5 |
Chinese-LLaMA-2-7B | 27.9 / 34.1 | Chinese-Alpaca-2-7B | 40.0 / 41.8 |
Chinese-LLaMA-Plus-33B | 35.2 / 38.8 | Chinese-Alpaca-Plus-33B | 46.6 / 45.3 |
Chinese-LLaMA-Plus-13B | 29.6 / 34.0 | Chinese-Alpaca-Plus-13B | 40.6 / 39.9 |
Chinese-LLaMA-Plus-7B | 25.4 / 26.3 | Chinese-Alpaca-Plus-7B | 36.8 / 32.6 |
长上下文版模型(16K)评测
LongBench是一个大模型长文本理解能力的评测基准,由6大类、20个不同的任务组成,多数任务的平均长度在5K-15K之间,共包含约4.75K条测试数据。以下是本项目16K系列模型在该中文任务(含代码任务)上的评测效果。LongBench推理代码请参考本项目:📖GitHub Wiki
Models | 单文档QA | 多文档QA | 摘要 | Few-shot学习 | 代码补全 | 合成任务 | Avg |
---|---|---|---|---|---|---|---|
Chinese-Alpaca-2-13B-16K | 47.9 | 26.7 | 13.0 | 22.3 | 46.6 | 21.5 | 29.7 |
Chinese-Alpaca-2-13B | 38.4 | 20.0 | 11.9 | 17.3 | 46.5 | 8.0 | 23.7 |
Chinese-Alpaca-2-7B-16K | 46.4 | 23.3 | 14.3 | 29.0 | 49.6 | 9.0 | 28.6 |
Chinese-Alpaca-2-7B | 34.0 | 17.4 | 11.8 | 21.3 | 50.3 | 4.5 | 23.2 |
Chinese-LLaMA-2-13B-16K | 36.7 | 17.7 | 3.1 | 29.8 | 13.8 | 3.0 | 17.3 |
Chinese-LLaMA-2-13B | 28.3 | 14.4 | 4.6 | 16.3 | 10.4 | 5.4 | 13.2 |
Chinese-LLaMA-2-7B-16K | 33.2 | 15.9 | 6.5 | 23.5 | 10.3 | 5.3 | 15.8 |
Chinese-LLaMA-2-7B | 19.0 | 13.9 | 6.4 | 11.0 | 11.0 | 4.7 | 11.0 |
量化效果评测
以Chinese-LLaMA-2-7B为例,对比不同精度下的模型大小、PPL(困惑度)、C-Eval效果,方便用户了解量化精度损失。PPL以4K上下文大小计算,C-Eval汇报的是valid集合上zero-shot和5-shot结果。
精度 | 模型大小 | PPL | C-Eval |
---|---|---|---|
FP16 | 12.9 GB | 9.373 | 28.2 / 36.0 |
8-bit量化 | 6.8 GB | 9.476 | 26.8 / 35.4 |
4-bit量化 | 3.7 GB | 10.132 | 25.5 / 32.8 |
特别地,以下是在llama.cpp下不同量化方法的评测数据,供用户参考,速度以ms/tok计,测试设备为M1 Max。具体细节见📖GitHub Wiki
llama.cpp | F16 | Q2_K | Q3_K | Q4_0 | Q4_1 | Q4_K | Q5_0 | Q5_1 | Q5_K | Q6_K | Q8_0 |
---|---|---|---|---|---|---|---|---|---|---|---|
PPL | 9.128 | 11.107 | 9.576 | 9.476 | 9.576 | 9.240 | 9.156 | 9.213 | 9.168 | 9.133 | 9.129 |
Size | 12.91G | 2.41G | 3.18G | 3.69G | 4.08G | 3.92G | 4.47G | 4.86G | 4.59G | 5.30G | 6.81G |
CPU Speed | 117 | 42 | 51 | 39 | 44 | 43 | 48 | 51 | 50 | 54 | 65 |
GPU Speed | 53 | 19 | 21 | 17 | 18 | 20 | x | x | 25 | 26 | x |
训练与精调
预训练
- 在原版Llama-2的基础上,利用大规模无标注数据进行增量训练,得到Chinese-LLaMA-2系列基座模型
- 训练数据采用了一期项目中Plus版本模型一致的数据,其总量约120G纯文本文件
- 训练代码参考了🤗transformers中的run_clm.py,使用方法见📖预训练脚本Wiki
指令精调
- 在Chinese-LLaMA-2的基础上,利用有标注指令数据进行进一步精调,得到Chinese-Alpaca-2系列模型
- 训练数据采用了一期项目中Pro版本模型使用的指令数据,其总量约500万条指令数据(相比一期略增加)
- 训练代码参考了Stanford Alpaca项目中数据集处理的相关部分,使用方法见📖指令精调脚本Wiki